Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Immunol ; 207(9): 2310-2324, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1497461

ABSTRACT

IFN-γ, a proinflammatory cytokine produced primarily by T cells and NK cells, activates macrophages and engages mechanisms to control pathogens. Although there is evidence of IFN-γ production by murine macrophages, IFN-γ production by normal human macrophages and their subsets remains unknown. Herein, we show that human M1 macrophages generated by IFN-γ and IL-12- and IL-18-stimulated monocyte-derived macrophages (M0) produce significant levels of IFN-γ. Further stimulation of IL-12/IL-18-primed macrophages or M1 macrophages with agonists for TLR-2, TLR-3, or TLR-4 significantly enhanced IFN-γ production in contrast to the similarly stimulated M0, M2a, M2b, and M2c macrophages. Similarly, M1 macrophages generated from COVID-19-infected patients' macrophages produced IFN-γ that was enhanced following LPS stimulation. The inhibition of M1 differentiation by Jak inhibitors reversed LPS-induced IFN-γ production, suggesting that differentiation with IFN-γ plays a key role in IFN-γ induction. We subsequently investigated the signaling pathway(s) responsible for TLR-4-induced IFN-γ production in M1 macrophages. Our results show that TLR-4-induced IFN-γ production is regulated by the ribosomal protein S6 kinase (p70S6K) through the activation of PI3K, the mammalian target of rapamycin complex 1/2 (mTORC1/2), and the JNK MAPK pathways. These results suggest that M1-derived IFN-γ may play a key role in inflammation that may be augmented following bacterial/viral infections. Moreover, blocking the mTORC1/2, PI3K, and JNK MAPKs in macrophages may be of potential translational significance in preventing macrophage-mediated inflammatory diseases.


Subject(s)
Interferon-gamma/biosynthesis , Macrophages/drug effects , Poly I-C/pharmacology , COVID-19/immunology , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/immunology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/immunology , Macrophages/immunology , Phosphatidylinositol 3-Kinases/immunology , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/immunology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/immunology , Toll-Like Receptor 4/agonists
2.
Nanomaterials (Basel) ; 11(3)2021 Mar 22.
Article in English | MEDLINE | ID: covidwho-1154459

ABSTRACT

High-throughput detection strategies for antibodies against SARS-CoV-2 in patients recovering from COVID-19, or in vaccinated individuals, are urgently required during this ongoing pandemic. Serological assays are the most widely used method to measure antibody responses in patients. However, most of the current methods lack the speed, stability, sensitivity, and specificity to be selected as a test for worldwide serosurveys. Here, we demonstrate a novel NanoBiT-based serological assay for fast and sensitive detection of SARS-CoV-2 RBD-specific antibodies in sera of COVID-19 patients. This assay can be done in high-throughput manner at 384 samples per hour and only requires a minimum of 5 µL of serum or 10 ng of antibody. The stability of our NanoBiT reporter in various temperatures (4-42 °C) and pH (4-12) settings suggests the assay will be able to withstand imperfect shipping and handling conditions for worldwide seroepidemiologic surveillance in the post-vaccination period of the pandemic. Our newly developed rapid assay is highly accessible and may facilitate a more cost-effective solution for seroconversion screening as vaccination efforts progress.

SELECTION OF CITATIONS
SEARCH DETAIL